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Abstract
Propagating intrinsic localized modes exist in the damped-driven discrete sine-
Gordon chain as attractors of the dynamics. The equations of motion of the
system are augmented with Gaussian white noise in order to model the effects
of temperature on the system. The noise induces random transitions between
attracting configurations corresponding to opposite signs of the propagation
velocity of the mode, which leads to a diffusive motion of the excitation. The
Heun method is used to numerically generate the stochastic time-evolution
of the configuration. We also present a theoretical model for the diffusion
which contains two parameters, a transition probability � and a delay time
τA. The mean value and the variance of the position of the intrinsic localized
mode, obtained from simulations, can be fitted well with the predictions of our
model, � and τA being used as parameters in the fit. After a transition period
following the switching on of the noise, the variance shows a linear behaviour
as a function of time and the mean value remains constant. An increase in the
strength of the noise lowers the variance, leads to an increase in �, a decrease in
τA and reduces the average distance a mode travels during the transition period.

PACS numbers: 05.45.−a, 05.40.−a, 63.20.Pw

1. Introduction

Intrinsic localized modes (ILMs) are localized excitations that can occur in a system due to
the interplay of discreteness and nonlinearity (for instance see [1–3]). These modes exhibit
internal dynamics, like oscillations or rotations of constituents of the system in the localization
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region. Therefore, these modes are also known as discrete breathers, alluding to the superficial
similarity between them and the breather solutions of the continuum sine-Gordon equation.
The majority of the literature deals with strictly time-periodic, nonpropagating ILMs. For this
specific type of discrete breather there are rigorous proofs of existence for the conservative
[4–6] and dissipative [6] cases. From the proofs it is clear that the requirements for the
existence of these modes are rather weak, which makes ILMs quite generic, in contrast to
breather solutions in the continuum. An overview of some recent results can be found in [7, 8].

First predictions [9] of the existence of such modes, however, did not exclude the case of
propagating discrete breathers and numerical results [10] soon showed the existence of mobile
ILMs. Several aspects of such travelling modes have been investigated so far, for example,
the interaction with an impurity [11] or the effects of bending of the chain along which the
excitation is travelling, in connection with models of DNA [12, 13]; questions connected to
the phenomenon of breather mobility itself have been discussed for instance in [14, 15]. To
our knowledge, the diffusion of intrinsic localized modes has not been looked at yet; this is in
stark contrast to the thoroughly investigated topic of soliton/solitary wave diffusion. For the
latter, see for instance [16–21] and references therein.

We study this problem in the discrete sine-Gordon chain (also known as the standard
Frenkel–Kontorova model) under damping and harmonic driving; the equations of motion, in
dimensionless units, are

d2un

dt2
= − 1

2π
sin(2πun) + C(un+1 + un−1 − 2un) − α

dun

dt
+ F sin(ω0t). (1)

This equation describes the dynamics of a chain of identical damped and driven pendulums in a
homogeneous gravitational field, with harmonic nearest-neighbour coupling. The quantity un

corresponds to the angle of deviation (in units of 2π ) of the nth pendulum from the position of
minimum energy. Certain systems of Josephson junctions can also be described by equation (1)
(see [22, 23] for example).

Numerical results [24, 25] show that intrinsically localized modes exist as attractors
of the dynamics governed by this equation. In particular, within certain ranges of the
parameters C, α, ω0 and F the attracting configurations are propagating ILMs with well-
defined propagation velocities, dependent on the system parameters; apart from the fact that
the discrete sine-Gordon equation is well known, this has been the main motivation for our
choice of equation (1). Due to the symmetry in the equations of motion, for each absolute
value of the velocity we can have positive and negative signs, i.e. propagation to the right or
left, respectively. There exist regions in parameter space where more than one absolute value
of the propagation velocity v is possible at fixed parameters.

In order to model temperature we add Gaussian white noise terms ξn(t) of strength σ , i.e.

〈ξn(t)〉 = 0 〈ξm(t)ξn(t
′)〉 = σ 2δmnδ(t − t ′) (2)

to the equations of motion (1) for the individual pendulums. Such noise terms can be described
in a clearer way by Wiener processes [26], but as the theoretical treatment of the diffusive
motion we present in sections 3 and 4 does not make use of the formalism of stochastic
differential equations, we do not tarry here. The relation between σ and the temperature T is
σ 2 = 2αkBT , where kB is Boltzmann’s constant. It turns out that the noise causes random
transitions between basins of attraction corresponding to opposite signs of the propagation
velocity of the discrete breather, which brings about the diffusive motion of the excitation.

In section 2 we present numerical results, including a comparison with predictions to be
derived in the next two sections. Section 3 discusses a theoretical model for the diffusive
behaviour of the modes which uses only the transition probability � between basins of
attraction as a parameter; it is then improved in section 4 by the introduction of the delay time
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τA as a second parameter. We discuss the results and draw some conclusions in section 5. An
appendix lists some intermediate results related to section 4.

2. Numerical results

The simulations are done in a chain of 1000 particles with periodic boundary conditions
(i.e. a ring). The stochastic time evolution according to (1) with the noise terms added
is generated by the Heun algorithm (time step 	t = 0.01). We use parameter values
α = 0.02, F = 0.02, ω0 = 0.2π and C = 0.890 along with several values of σ . The
local energies

En = 1

2
p2

n +
1

(2π)2
[1 − cos(2πun)] (3)

are used to define the position X of the localized mode as

X =
∑n=+2

n=−2(n0 + n)En0+n∑n=+2
n=−2 En0+n

(4)

where the site n0 is chosen in the following way: the distribution of the En sharply peaks around
the location of the ILM. Usually, this peak has only one maximum. In this case, n0 is the site
where this maximum occurs. Sometimes, the peak displays a structure maximum–minimum–
maximum on three subsequent sites. In this case n0 is the site of the peak’s minimum. Using
(4) we calculate the position of the excitation out of the numerically generated configurations.
Averaging over 2000 realizations, we obtain the time evolution of the mean value of X as well
as the variance of the position. In figure 1 we show some sample trajectories. We can see
that the noise causes the system to jump between attracting states corresponding to opposite
signs of the propagation velocity v. At the parameter values chosen, the system is known
[24] to allow for at least two values of |v|, which are approximately 0.0186 and roughly twice
that. As the trajectories shown already hint and a closer quantitative look confirms, only the
former of the two values is involved. We cannot strictly exclude the appearance of more than
just this one value of |v|, but our numerical results show that if this happens at all, it is a
rare event. Transitions v ≈ 0.0186 ↔ v ≈ −0.0186 are clearly dominant. A comparison
between the results from simulations and the predictions of the model in section 4 is shown in
figure 2. The model parameters � and τA have been determined by a least-squares method. We
have generated predictions of the mean and the variance for various values of τA and �, with
a distance of 5 between subsequent values of τA and a distance of 10−5 between subsequent
values of �. For each pair (τA,�) we next have calculated the squared relative deviation
between the predicted and the numerically obtained mean values and also the squared relative
deviation between the predicted and the numerically obtained variances. Adding these two
quantities gives the total relative deviation between prediction and simulation. We then have
chosen the pair (τA,�) yielding the minimum of the calculated total relative deviations as
a first approximation and improved it by redoing the procedure in the vicinity of the pair
with a τA-step of 1 and the �-step unchanged. Given that our model is only an approximate
description and that there are still notable fluctuations in the numerical results, an even higher
precision in the determination of the two parameters did not appear called for. From these
fits we have found that a larger σ means a higher value of � and a lower value of τA. For
the mean value we note a clear discrepancy between the prediction of the model and the data
provided by simulations in the transient time regime between the short-time and the long-time
behaviour. Our data for various noise strengths show that this mismatch becomes larger if
the ratio �−1/τA decreases. The mean value approaches a σ -dependent value constant in
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Figure 1. Some sample trajectories for two different strengths of the noise. Top: σ = 7 × 10−5,
Bottom: σ = 12 × 10−5. The position of the localized mode has been calculated every 100 time
units.

time, i.e. after the transient there is no mean drift in the system. The variance, also after
the transient, depends linearly on time, which is the result expected for standard diffusion
(Brownian motion). Completely non-standard, however, is the fact that the diffusion constant,
i.e. the slope of the variance as a function of time, decreases with increasing noise strength,
i.e. increasing temperature. A temperature dependence of qualitatively the same nature has
been reported for one of several diffusive processes contributing to the diffusion of kinks in
a φ4-model [18]. As we can see from figure 2, the theoretical model developed in section 4
reproduces the numerically found temperature dependence. The agreement for the variance is
quite satisfactory, for the mean value it is harder to judge, because of the strong fluctuations
still present despite the averaging over 2000 realizations.

3. A first model

The observation of the numerically generated trajectories reveals that the effect the noise
has on the excitation is apparently random transitions of the configuration between basins of
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Figure 2. Comparison between data from simulations and results from the model of section 4.
The simulation data are averages over 2000 realizations. Left: mean value of the position
(with respect to the initial position), right: variance of the position. Top: σ = 10 × 10−5

(fitted parameters: � = 6.8 × 10−4, τA = 643), bottom: σ = 12 × 10−5 (fitted parameters:
� = 1.06 × 10−3, τA = 582).

attraction corresponding to opposite signs of the propagation velocity. Also, only one absolute
value of the velocity plays a role; there is no evidence of the involvement of other velocity
values, which in principle are possible in the system. We consider a countable set of possible
velocity values vi together with the probabilities pi(t) of the system being in the configuration
corresponding to the propagation velocity vi at time t. From the obvious relation

X(t) =
∫ t

0
v(t ′) dt ′ (5)

for the position X(t) of the breather we obtain

〈X(t)〉 =
∫ t

0

∑
i

pi(t
′)vi dt ′ =

∑
i

vi

∫ t

0
pi(t

′) dt ′ (6)

for the mean value. For the two-time correlation function C(t2, t1) we find

C(t2, t1) := 〈X(t2)X(t1)〉 − 〈X(t2)〉〈X(t1)〉
=

∑
i,j

vivj

∫ t2

0

∫ t1

0
[p(vi, t

′
2; vj , t

′
1) − pi(t

′
2)pj (t

′
1)] dt ′1 dt ′2

=
∑
i,j

vivj

∫ t2

0

∫ t1

0
[pi|j (t ′2|t ′1) − pi(t

′
2)]pj (t

′
1) dt ′1 dt ′2. (7)
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Herein p(vi, t
′
2; vj , t

′
1) is the joint probability of finding velocity vi at time t ′2 and

velocity vj at time t ′1; pi|j (t ′2|t ′1) is the corresponding conditional probability pi|j (t ′2|t ′1) =
p(vi, t

′
2; vj , t

′
1)/pj (t

′
1). For the case of only two velocities +v and −v the above specializes to

〈X(t)〉 = v

{∫ t

0
p+(t

′) dt ′ −
∫ t

0
[1 − p+(t

′)] dt ′
}

= v

[
2
∫ t

0
p+(t

′) dt ′ − t

]
(8)

as for only two values p− = 1 − p+, and

C(t2, t1) = v2
∫ t2

0

∫ t1

0
{[p+|+(t ′2|t ′1) − p+(t

′
2)]p+(t

′
1) + [p−|−(t ′2|t ′1) − p−(t ′2)]p−(t ′1)

− [p+|−(t ′2|t ′1) − p+(t
′
2)]p−(t ′1) − [p−|+(t ′2|t ′1) − p−(t ′2)]p+(t

′
1)} dt ′1 dt ′2. (9)

Up to now nothing has been said about the probabilities occurring in (8) and (9). We assume
that there is a constant probability � per unit time for a change in the sign of the velocity. This
leads to

dp+

dt
= �(p− − p+) (10)

dp−
dt

= �(p+ − p−) (11)

with the solutions

p+(t) = 1
2 + 1

2 (p+ − p−)(0) exp(−2�t) (12)

p−(t) = 1
2 − 1

2 (p+ − p−)(0) exp(−2�t). (13)

We furthermore find

p+|−(t ′2|t ′1) = p−|+(t ′2|t ′1) = 1
2 − 1

2 exp[−2�(t ′2 − t ′1)] (14)

p+|+(t ′2|t ′1) = p−|−(t ′2|t ′1) = 1
2 + 1

2 exp[−2�(t ′2 − t ′1)]. (15)

Choosing the initial condition to have positive sign of the velocity, from these expressions and
(8), (9) we obtain

〈X(t)〉 = v

2�
[1 − exp(−2�t)] lim

t→∞〈X(t)〉 = v

2�
(16)

and

C(t2, t1) = v2

2�2
[1 − exp(−2�t2)][cosh(2�t1) − 1]. (17)

From the latter expression we find for the variance of the position

var[X(t)] = 2
v2

�2
exp(−�t)[sinh(�t)]3. (18)

The nonvanishing long-time limit of 〈X(t)〉 (16) is a consequence of the initial condition,
which breaks the symmetry between the +v and −v states. After equilibration by stochastic
transitions this symmetry is restored, and in the mean the position does not change anymore.
Asymptotically for long times, the variance behaves as exp(2�t). This does not reflect the
behaviour found in simulations. Thus, though due to the denominators of the prefactors in
(16) and (18) an increase in the noise strength via an increase in � reduces the mean value and
partially has a suppressing effect on the variance (as is expected from numerical results), the
results are not satisfactory and an improvement of the model is called for. The next section is
dedicated to this.
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4. An improved model

Individual trajectories obtained in numerics clearly show that the localized excitations change
the sign of their propagation velocity under the influence of noise. This change implies a
change in the configuration of the breather, more precisely a transition from one basin of
attraction to another. Such a transition, however, does not happen instantaneously. Rather,
there will be a time span during which the configuration is not close to either attractor; the
dynamics during this transition period may be quite involved and is not a subject of this paper.
We attempt to roughly capture the effects of the noninstantaneousness of the transition by the
introduction of a transition time τA, during which the velocity of the breather is 0 (i.e. just the
average of initial and final velocities in a transition +v ↔ −v), and during which no further
transitions may be initiated. This means that if a transition from the +v state is initiated at
time t = 0, then the velocity of the localized mode immediately acquires the value 0, which
it will retain up to t = τA, when the velocity jumps to −v. In particular, we do not take into
consideration ‘failed’ transitions, i.e. jumps of the velocity from +v to 0 and back to +v. It
is unclear whether taking into account such processes would improve the model; reality is
much more complex and can involve all kinds of trajectories in velocity space. It certainly
would increase the number of parameters and assumptions in the model; therefore we confine
ourselves to the simple model where each initiated transition after time τA ends in the attractor
corresponding to the opposite sign of the velocity. We keep the assumption of the previous
section that there is a constant probability � per unit time for a transition to be initiated.

The introduction of the ‘delay time’ τA limits the maximum number m of jumps occurring
in time t to m = [t/τA] + 1, where [x] denotes the integer part of x. If we consider a trajectory
with n jumps up to time t (note that this implies t � (n − 1)τA), the jumps occurring at times
T1, T2, . . . , Tn, with 0 � T1 � T2 − τA � · · · � Tn − τA, we obtain for the distance traversed
by the ILM:

X(t) = v[T1 − (T2 − T1 − τA) + (T3 − T2 − τA)

− · · · − π(n)(Tn − Tn−1 − τA) + π(n)(t − Tn − τA)]

= v

[
−2

n∑
k=1

π(k)Tk + π(n)t +
1 − π(n)

2
τA

]
(19)

where π(n) is the parity of n, i.e. π(n) = +1 if n is even and π(n) = −1 if n is odd. Expression
(19) holds if Tn � t − τA; in the case Tn > t − τA we find

X(t) = v

[
−2

n−1∑
k=1

π(k)Tk − π(n)Tn +
1 + π(n)

2
τA

]
(20)

because the excitation does not move after the nth jump. The temporal probability density of
n jumps occurring at the times T1, . . . , Tn is in the case Tn � t − τA:

p(Tn, . . . , T1) = exp(−�T1)� exp[−�(T2 − T1 − τA)]

· · · exp[−�(Tn − Tn−1 − τA)]� exp[−�(t − Tn − τA)]

= �n exp[−�(t − nτA)] (21)

and analogously in the case Tn > t − τA:

p(Tn, . . . , T1) = �n exp[−�(Tn − (n − 1)τA)]. (22)

Using equations (19)–(22) the mean value of X(t) can be calculated as

〈X(t)〉 = S0(t) +
m−1∑
n=1

[S1,n(t) + S2,n(t)] + S3,m(t) (23)
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with

S0(t) = vt exp[−�t] (24)

corresponding to no jumps, and, using the step function H,

S1,n(t) = H(t − nτA)v�n exp[−�(t − nτA)]
∫ t−τA

(n−1)τA

dTn

∫ Tn−τA

(n−2)τA

dTn−1 . . .

∫ T3−τA

τA

dT2

∫ T2−τA

0
dT1

[
−2

n∑
k=1

π(k)Tk + π(n)t +
1 − π(n)

2
τA

]
(25)

S2,n(t) = H(t − nτA)v�n

∫ t

t−τA

dTn exp[−�(Tn − (n − 1)τA)]
∫ Tn−τA

(n−2)τA

dTn−1 . . .

∫ T3−τA

τA

dT2

∫ T2−τA

0
dT1

[
−2

n−1∑
k=1

π(k)Tk − π(n)Tn +
1 + π(n)

2
τA

]
(26)

and

S3,m = H(t − (m − 1)τA)[1 − H(t − mτA)]v�m

×
∫ t

(m−1)τA

dTm exp[−�(Tm − (m − 1)τA)]
∫ Tm−τA

(m−2)τA

dTm−1 . . .

∫ T3−τA

τA

dT2

×
∫ T2−τA

0
dT1

[
−2

m−1∑
k=1

π(k)Tk − π(m)Tm +
1 + π(m)

2
τA

]
. (27)

Several expressions are useful in evaluating these quantities as well as others to be introduced
below. They are gathered in the appendix. After some algebra we arrive at

S1,n(t) = H(t − nτA)
1 + π(n)

2

v

�
exp[−�(t − nτA)]

[�(t − nτA)]n+1

(n + 1)!
(28)

S2,n = H(t − nτA)
1 − π(n)

2

v

�
exp[−�(t − nτA)]

n∑
l=0

1

(n − l)!
{[�(t − nτA)]n−l

− [�(t − (n − 1)τA)]n−le−�τA} (29)

S3,m = H(t − (m − 1)τA)[1 − H(t − mτA)]
1 − π(m)

2

v

�

×
{

1 − exp[−�(t − (m − 1)τA)]
m∑

l=0

[�(t − (m − 1)τA)]m−l

(m − l)!

}
. (30)

The expressions for S2,n and S3,m are complicated because of the polynomials appearing;
in all the cases S1,n, S2,n and S3,m, however, we clearly see the ‘retardation’ caused by the
introduction of τA.

In a similar way, the expectation of X(t)2 can be written as

〈X(t)2〉 = Q0(t) +
m−1∑
n=1

[Q1,n(t) + Q2,n(t)] + Q3,m(t) (31)

with

Q0(t) = v2t2 exp(−�t) (32)
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Q1,n(t) = H(t − nτA)
v2

�2
exp[−�(t − nτA)]

[�(t − nτA)]n+2

(n + 2)!

×
[

1 + π(n)

2
(n + 2) +

1 − π(n)

2
(n + 1)

]
(33)

Q2,n(t) = H(t − nτA)
v2

�2
exp[−�(t − nτA)]

n+1∑
k=0

{[�(t − nτA)]n+1−k

− [�(t − (n − 1)τA)]n+1−k e−�τA}
×

[
1 + π(n)

2

n

(n + 1 − k)!
+

1 − π(n)

2

n + 1

(n + 1 − k)!

]
(34)

Q3,m(t) = H(t − (m − 1)τA)[1 − H(t − mτA)]
v2

�2

×
{
(1 − exp[−�(t − (m − 1)τA)])

(
1 + π(m)

2
m +

1 − π(m)

2
(m + 1)

)

−
m∑

k=0

[�(t − (m − 1)τA)]m+1−k exp[−�(t − (m − 1)τA)]

×
[

1 + π(m)

2

m

(m + 1 − k)!
+

1 − π(m)

2

m + 1

(m + 1 − k)!

]}
. (35)

From these results we can of course obtain var[X(t)] = 〈X(t)2〉 − 〈X(t)〉2, but as the
expressions shown above are already rather involved, we do not carry out this step explicitly.
However, from the above results the mean and the variance can easily be plotted and compared
with the results from simulations, as done in figure 2.

The behaviour for short times t < τA,�t � 1 can be obtained from S3,1 and Q3,1. We
find

〈X(t)〉 = v

�
[1 − exp(−�t)] ≈ v

�

[
�t − 1

2
(�t)2 . . .

]
(36)

and

var[X(t)] = v2

�2
[1 − 2�t exp(−�t) − exp(−2�t)] ≈ 1

3

v2

�2
(�t)3. (37)

A completely different approach, which we will therefore present in a separate publication,
easily yields the long-time (t 	 1/�) behaviour. The results are 〈X〉 = v/(2�), which agrees
with the result from section 3 independently of τA and var[X(t)] = Dt + c with

D = v2

�2
(
τA + 1

�

) c = − v2

2�2
. (38)

Here, even in the case τA → 0, agreement with the simpler model of the previous section,
where the variance shows exponential behaviour, is not achieved.

5. Discussion and outlook

As we have seen, the diffusive behaviour of an intrinsic localized mode in the damped-driven
discrete sine-Gordon chain, when Gaussian white noise is coupled to the system to model
the effects of temperature, is due to random transitions between attracting configurations of
the system that correspond to opposite signs of the propagation velocity of the mode. In this
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paper we have developed a model that satisfactorily describes this diffusion process. At a
preliminary stage, the model only uses the transition probability per unit time, �, as parameter.
This approach is not sufficient; it is improved by the introduction of a second parameter, the
delay time τA. Both parameters are determined from fits to the results from simulations.
These fits show that with increasing temperature τA decreases and � increases. The long-time
behaviour for both models is the same for the expectation of the position of the intrinsic
localized mode, but not for the variance of the position, not even in the case of vanishing delay
time. This is due to a fundamental difference between the two approaches we have presented.
In the one-parameter model we have only taken into account the probabilities of finding the
configurations in one of the attracting states or the other. The two-parameter model, on the
other hand, follows individual trajectories through time and considers the probabilities for
repeated jumps between the basins of attraction to occur in one and the same trajectory. The
nonvanishing delay time, during which propagation of the excitation and further jumps are
forbidden, also introduces a non-Markovian element in the diffusion process. The model does
not make use of any specific characteristics of the system; it only requires the existence of the
attracting states and the possibility to excite transitions between these states by noise. The
details of such a transition will, we suspect, be sensitive to the particular system, but in
the model that we have presented in section 4 the details are ‘hidden’ in the delay time τA.
Thus the origin of deviations between the prediction of the model and the result of simulations,
which show in the transient period between the very early stages of the stochastic evolution
and the long time diffusive regime, lies in the dynamics of the transition from one attractor
to the other. This view is clearly supported by the fact that these deviations increase if
�−1/τA decreases, as already mentioned in section 2; a decrease of this ratio indicates that the
time the system spends ‘in transition’ (the phase we treat only with a strong approximation)
increases in relation to the time the system is in one of the attractors, propagating with
a well-defined velocity. Thus we can expect the quality of our predictions to decrease
as well.

A first step in the development of a more detailed model would be a calculation/estimation
of the parameters � and τA from the system parameters C, α, F, ω0 and the noise strength σ .
A further step would be to go beyond the simple picture of ‘delayed jumps’ that is at the heart
of our model and to include the dynamics in full. The latter step then should also be able to
describe the behaviour in the transient time regime.
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Appendix

We list here several expressions that arise in the evaluation of the mean value of X and of X2.
M in the equations below is not to be confused with the maximum number of jumps m.

∫ TM−τA

(M−2)τA

dTM−1

∫ TM−1−τA

(M−3)τA

dTM−2 . . .

∫ T3−τA

τA

dT2

∫ T2−τA

0
dT1 = [TM − (M − 1)τA]M−1

(M − 1)!
.

(A.1)
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For 1 � k � M − 1∫ TM−τA

(M−2)τA

dTM−1

∫ TM−1−τA

(M−3)τA

dTM−2 . . .

∫ T3−τA

τA

dT2

∫ T2−τA

0
dT1Tk

= k
[TM − (M − 1)τA]M

M!
+ (k − 1)τA

[TM − (M − 1)τA]M−1

(M − 1)!
(A.2)

∫ TM−τA

(M−2)τA

dTM−1

∫ TM−1−τA

(M−3)τA

dTM−2 . . .

∫ T3−τA

τA

dT2

∫ T2−τA

0
dT1T

2
k

= k(k + 1)
[TM − (M − 1)τA]M+1

(M + 1)!
+ 2τAk(k − 1)

[TM − (M − 1)τA]M

M!

+ (k − 1)2τ 2
A

[TM − (M − 1)τA]M−1

(M − 1)!
. (A.3)

For 1 � k < l � M − 1∫ TM−τA

(M−2)τA

dTM−1

∫ TM−1−τA

(M−3)τA

dTM−2 . . .

∫ T3−τA

τA

dT2

∫ T2−τA

0
dT1TkTl

= (kl + k)
[TM − (M − 1)τA]M+1

(M + 1)!
+ (2kl − l − k)τA

[TM − (M − 1)τA]M

M!

+(kl − l − k + 1)τ 2
A

[TM − (M − 1)τA]M−1

(M − 1)!
(A.4)

n∑
k=1

π(k) = −1 − π(n)

2
(A.5)

n∑
k=1

π(k)k = 1 + π(n)

2

n

2
+

1 − π(n)

2

(
−n + 1

2

)
(A.6)

n∑
l=k+1

π(l)l = 1 + π(n)

2

n

2
+

1 − π(n)

2

(
−n + 1

2

)
− 1 + π(k)

2

k

2
− 1 − π(k)

2

(
−k + 1

2

)

(A.7)

n−1∑
k=1

π(k)

n∑
l=k+1

π(l)l = 1 + π(n)

2

(
−n2

4
− n

2

)
+

1 − π(n)

2

(
1

4
− n2

4

)
(A.8)

n−1∑
k=1

π(k)

n∑
l=k+1

π(l) = −1

2

1 + π(n)

2
− 1

2
(n − 1) (A.9)

n−1∑
k=1

π(k)k

n∑
l=k+1

π(l) = 1 − π(n)

2

(
−n2

4
+

1

4

)
+

1 + π(n)

2

(
−n2

4

)
(A.10)

n−1∑
k=1

π(k)

n∑
l=k+1

π(l)kl = 1 + π(n)

2

(
−n3

6
− n2

8
− n

12

)
+

1 − π(n)

2

(
−n3

6
− n2

8
+

n

6
+

1

8

)

(A.11)
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